Banach algebra and summability

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arens regularity and cohomological properties of Banach lattice algebra

A Banach lattice algebra is a Banach lattice, an associative algebra with a sub-multiplicative norm and the product of positive elements should be positive. In this note we study the Arens regularity and cohomological properties of Banach lattice algebras.

متن کامل

Structure of Certain Banach Algebra Products

Let  and  be Banach algebras, ,  and . We define an -product on  which is a strongly splitting extension of  by . We show that these products form a large class of Banach algebras which contains all module extensions and triangular Banach algebras. Then we consider spectrum, Arens regularity, amenability and weak amenability of these products.

متن کامل

On the Banach Algebra

We give some properties of the Banach algebra of bounded operators (lp(α)) for 1≤ p≤∞, where lp(α)= (1/α)−1∗lp . Then we deal with the continued fractions and give some properties of the operator ∆h for h > 0 or integer greater than or equal to one mapping lp(α) into itself for p ≥ 1 real. These results extend, among other things, those concerning the Banach algebra Sα and some results on the c...

متن کامل

Banach Algebra Notes

These notes are for a series of lectures given in functional analysis during Winter term of 2015. The two influences of the presentation here are Banach Algebra Techniques in Operator Theory (2e) by Ronald G. Douglas and Lecture Notes on the Spectral Theorem by Dana P. Williams. The notes start with a presentation of the two facts about nets that are required for the subject matter at hand. We ...

متن کامل

The Series on Banach Algebra

Let X be a non empty normed structure and let s1 be a sequence of X. The functor ( ∑ κ α=0(s1)(α))κ∈N yielding a sequence of X is defined as follows: (Def. 1) ( ∑ κ α=0(s1)(α))κ∈N(0) = s1(0) and for every natural number n holds ( ∑ κ α=0(s1)(α))κ∈N(n + 1) = ( ∑ κ α=0(s1)(α))κ∈N(n) + s1(n + 1). One can prove the following proposition (1) Let X be an add-associative right zeroed right complementa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 1958

ISSN: 0019-2082

DOI: 10.1215/ijm/1255454541